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Abstract – This paper discusses the security-constrained unit commitment programming 

project guidelines, formulations, high-level and low-level programming, and procedures to 

complete a secure and economical system model. Low level programming was completed for 

the unit commitment portion. In lieu of security program, a high-level process flow will show 

security based constraints due to the author’s own constraints discussed in the comments 

section of the report.    
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Introduction 
 

 Security-Constrained Unit Commitment (SCUC) consists of two components, 

system security and economic dispatch. The objective of the problem is focused solely on 

the economic dispatch of generators with bidding segments, no load costs, starting costs, 

and other costs incurred during operation.  Least cost is desired according to the system 

operators. Simple economics dictates that generators can supply (X) MW of power at 

location xyz and deliver the power through the transmission lines L123. However, this is 

not such a simple problem of who can “bid the lowest price” and win the contract in a 

short period of time. Location, transmission design, and the generator’s operating 

efficiencies are conglomerated together to form a complex set of questions that the 

system operators must answer using analysis before awarding contracts to independent 

power producers. Thus, much planning and analysis is needed to determine the minimal 

cost that satisfies system security.  

 The power market operations course, ECE 556, at the Illinois Institute of 

Technology has set guidelines to help make cost-effect and secure dispatch decisions for 

diverse system models. The final project for the course outlines a good practice problem 

of determining the least-cost dispatch for three generators, 5 transmission lines, phase 

shifters, and bidding segments. The problem definition will describe the project overview 

with given information and final expectations. The game plan will then be drawn to show 

how the author tackled the challenge. Program components are discussed to categorize 

the  project portions into manageable sub-programming projects. Finally the process flow 

shows a high-level procedure for the life of the program. 
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Problem Definition 

 
The final project instructions dictated that a program be written to automatically 

formulate, compute, and solve the security-constrained unit commitment model. 

The testing system, a 6-bus system, depicted in Figure 1, has 3 units, 5 transmission lines, 

and 2 phase shifting transformers. System load and reserve requirements over the 24-hour 

horizon are shown in Table 1. Individual unit constraints are shown in Table 2. Unit 

bidding information is shown in Table 3. It is assumed that bidding for all the hours are 

the same. Variable startup cost information is shown in Table 4. Transmission line data 

are shown in Table 5. Phase shifting transformer data are shown in Table 6. Load 

distribution factors are shown in Table 7. 
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The consideration of phase-shifters and variable start-up costs was optional in the final 

project problem definition.  
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Game Plan 
 

The approach on the project should have been at least a month before the due date 

to allow for plenty of time to tackle bugs in the program and formulations. The author’s 

approach was to tackle each sub problem of the unit commitment separately and combine 

the constraints and objective functions together into one master matrix to be processed by 

the MIP program. The project began determining a cost formulation for the test case 

generators. It was clear that the price of the generator would influence the formulation 

and the programming of the objective function and constraints. Formulation was done for 

every test case generator and a “variable-matrix” was formed to represent all the indicator 

variables, continuous variables, etc that the individual price and quantities formulated. 

Only the first few hours were used to test the program and generate constraints like the 

cost function for the generators. The author learned to develop algorithms to generate 

common patterns for NT (number of hours) hours. The start-up and shut-down indicators 

were formulated for the test case generators at any hour. Sample data was manually 

entered into excel from the formulations for the first test case generator and for the first 

few hours. The author then developed, after many long hours and failed attempts, loops 

to generate the correct matrices for hours 1:NT. The objective matrix, f, and the 

constraints, A, and Ae, were then exported from MATLAB using –ascii commands and 

then imported into excel. The output from the program was then compared against the 

expected output for the first few hours. “If”-else” statements, generated in excel, 

highlighted the programming output cells that deviated from the expected results. If the 

routines worked, they were added to the master program and the additional constraints 

were added to the master constraint matrix in the program. This process of write 
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formulations, manually enter in first few hours test case generator 1, develop algorithm, 

write code, test code, export output, and lastly compare output to formulations continued 

for every subcomponent of the unit commitment.    
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Program Components 

 
Unit Commitment 

Cost Functions 

 For each test generator, there are bidding prices for each segment of MW 

generated. Segment prices can be either non-convex or convex. The prices are used in the 

objective function and it is desired to minimize these costs. The constraints for the 

formulations are also included.  

 

Start-up and Shut-down indicators 

 These indicators represent the status of the generator, whether it is starting up or 

shutting down. Indicators are used for NT hours (24 hours in the case) and are useful in 

other formulations. 

 

Start-up and Shut-down costs 

 Additional costs associated with the above start-up and shut-down indicators. It is 

the objective to minimize these costs throughout the system and throughout NT hours.  

 

Capacities 

 Each test case generator has a minimum capacity it is willing to generate as being 

committed and a maximum capacity. These min and max limits are formulated as 

constraints for each generator for NT hours. 
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Reserves 

 The 10-minute spinning reserve of a unit is the unloaded synchronized generation 

that can ramp up in 10 minutes. The spinning reserve of a unit cannot exceed the 

difference between its maximum capacity and current generation. It is also limited by the 

10-minute maximum sustained rate. Operating reserve is the unloaded 

synchronized/unsynchronized generating capacity that can ramp up in 10 minutes. When 

a unit is in operation, its operating reserve is the same as spinning reserve. When a unit is 

down, its operating reserve is the same as its quick start capability. These limits are 

represented as constraints with their respective indicator variables. 

 

Ramping Constraints 

From one hour to the next, a unit cannot increase its output above a maximum 

increment, which is called the ramping up limit. Similarly, a unit cannot decrease its 

output above a maximum decrement, which is called the ramping down limit. These 

limits are represented as constraints with indicator variables. 

 

Minimum uptime/downtime constraints 

Minimum up time constraint implies that a unit must stay in operation for a certain 

number of hours before it can be shut down; minimum down time constraint implies that a unit 

must remain down for a certain number of hours before it can be brought online. Indicator 

variables can be used to represent these limits in the constraints. 

 

System load balance and reserve requirements 
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These are constraints that the generators must meet the set load D, spinning 

reserve requirements, and operating reserve requirements.  These constraints are also 

represented using indicator variables.  

 

Variable Start-Up Costs 

These costs were not considered in the project, however, they are time sensitive 

and depend on previous hour status.  

 

Security 

 

DC Power Flow 

DC power flow is used a quick solution to the test case system. The bus, load, and 

line data is entered into the program as arrays. The impedance matrices can be 

determined.  

 

Power Transfer Distribution Factors 

Based on the system bus, line, and load data, PTDF’s can be formulated for each 

bus 1-N, N-N, and then represented as constraints using indicator variables. Line flow 

and phase shifter limits must also be included.  

 

 

 

 



 13 

Process Flow 

 
Flow diagrams will illustrate some high-level processes for the program. The first 

diagram, Figure 2, shows the game plan process for each subcomponent.  
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Figure 3 shows a description of the two parts of the program project. Only the unit 

commitment portion was completed except for the minimum uptime/down time 

component.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Program Flow Diagram 

INPUTS 

Generator = [price, bidding segment, MW, minimum 

capacity, maximum capacity, no-load cost, start-up cost, shut-

down cost, minimum up time, minimum down time, ramp-up 

rate, ramp-down rate, MSR, QSC, Initial Status, Initial Hour, 

Initial MW, system load, spinning reserve, operating reserve] 

 

Line = [from, to, r, x, flow limit] 

 

Load = [bus, percentage of system load]  

Unit Commitment  
 
For 1:N Generators() 

  Costs represented in the objective function ($/MWh, start-up, shut-down, no-load) 

  Price variable constraints, bidding segment constraints 

  Minimum capacity, maximum capacities and other constant variables 

  Upper bounds, lower bounds, variable array (integer/continuous). Every 

                        subcomponent for the unit commitment has the constraints represented in matrix                                                                                                    

                        form for A, Ae, b, be, xint, lb,ub, and f.  

 

Summary – When the function completes, each generator will have a MIP objective function, equality and inequality 

arrays, upper bounds, lower bounds, and x-array. Since the generator constants do not change for each hour, there 

will be only one MIP for each generator usable for hours 1:N. These will be master reference arrays for calculating 

other components of the program. Each subcomponent for the unit commitment is represented inside the generator 

function because the generator influences the unit commitment. Each subcomponent also generates its own f, A, Ae, 

b, be, xint, lb, ub, and f matrices. When the subcomponent procedure is complete, the results are added to the master 

matrices representing the unit commitment MIP.  

 

Inputs: 

 (noload,startupcost,shutdowncost,price,quantity,NT,PMIN,PMAX,QSC,MSR,RU,RD,D,SR,OR) 

Outputs:  

(f,Aeq,beq,Aeinq,beinq,lb,ub,x) 

INPUTS 

Generator = [price, bidding segment, MW, minimum 

capacity, maximum capacity, no-load cost, start-up cost, shut-

down cost, minimum up time, minimum down time, ramp-up 

rate, ramp-down rate, MSR, QSC, Initial Status, Initial Hour, 

Initial MW, system load, spinning reserve, operating reserve] 

 

Line = [from, to, r, x, flow limit] 

 

Load = [bus, percentage of system load]  

Security 
 
For 1:N Buses() 

Imports bus and lines data. Computes admittance matrix and calculates power transfer distribution 

factors. Limits on the line flows are entered as constraints along with phase shift limits.  

    

Summary – The PTDF are calculated for N buses for K lines. The constraints hold PTDF information and flow limits  

 

Inputs: 

 (line, frombus, tobus, r, x, flowlimit, pstrans, frombus, tobus, r, x , anglemax , anglemin, load, busno, percent) 

Outputs:  

(f,Aeq,beq,Aeinq,beinq,lb,ub,x) 
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II. Unit Commitment 

 
 This section of the final project for programming the SCUC will focus only on the 

unit commitment portion of the problem. The formulation section lists all relevant 

equations needed to form the unit commitment. The algorithms section discusses some 

techniques in generating the constraints or implementing the formulation into MATLAB. 

The appendix lists code referenced for unit commitment. 

 

Formulation 

 
Cost Functions 
 

For a convex function the formulation is as follows: 

 

Convex function 

 

 

 

 

 

 

 

 

For a non-convex function, the formulation is as follows: 

 

Non-convex function 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 below represent the bidding segments and prices for the test case in the 

assignment. Table 2a represents the test case unit capacities and no-load costs.  

G1 is non-convex, G2 is convex, G3 is convex 
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For G1 at any hour 

c1,t = 200u1,t + 20px1,t,1 + 25px1,t,2  + 24px1,t,3 + 23px1,t,4 

p1,t = px1,t,1 + px1,t,2 + px1,t,3 + px1,t,4 

40δ1,t,1 ≤ px1,t,1 ≤ 40u1,t 

60δ1,t,2 ≤ px1,t,2 ≤ 60δ1,t,2 

80δ1,t,3 ≤ px1,t,3 ≤ 80δ1,t,3 

0 ≤ px1,t,4 ≤ 40δ1,t,4 

 

Objective Function Array 

 

f = 

 

 

 

 
 

 

Constraints Matrix 

 

 

Bounds Arrays 

 

 

 

 

 

 

u1,1 p1,1 px1,1,1 px1,1,2 px1,1,3 px1,1,4 δ1,1 δ1,1,1 δ1,1,2 δ1,1,3 δ1,1,4 y1,1 z1,1 sr1,1 or1,1 

200 0 20 25 24 23 0 0 0 0 0 100 50 0 0 

  u1,1 p1,1 px1,1,1 px1,1,2 px1,1,3 px1,1,4 δ1,1 δ1,1,1 δ1,1,2 δ1,1,3 δ1,1,4 y1,1 z1,1 sr1,1 or1,1 

= 0 0 -1 1 1 1 1 0 0 0 0 0 0 0 0 0 

E 0 0 0 -1 0 0 0 0 40 0 0 0 0 0 0 0 

E 0 -40 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

E 0 0 0 0 -1 0 0 0 0 60 0 0 0 0 0 0 

E 0 0 0 0 1 0 0 0 0 -60 0 0 0 0 0 0 

E 0 0 0 0 0 -1 0 0 0 0 80 0 0 0 0 0 

E 0 0 0 0 0 1 0 0 0 0 -80 0 0 0 0 0 

E 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 

E 0 0 0 0 0 0 1 0 0 0 0 -40 0 0 0 0 

 u1,1 p1,1 px1,1,1 px1,1,2 px1,1,3 px1,1,4 δ1,1 δ1,1,1 δ1,1,2 δ1,1,3 δ1,1,4 y1,1 z1,1 sr1,1 or1,1 

lb 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

ub 1 inf inf inf inf inf 1 1 1 1 1 1 1 1 1 

x 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 
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For G2 at any hour 

c2,t = 150u2,t + 24px2,t,1 + 26px2,t,2  + 28px2,t,3  

p2,t = px2,t,1 + px2,t,2 + px2,t,3 

0 ≤ px2,t,1 ≤ 30 

0 ≤ px2,t,2 ≤ 50 

0 ≤ px2,t,3 ≤ 20 

 

objective function array 

 

f = 

 

 c1,t u1,t p1,t px1,t,1 px1,t,2 px1,t,3 px1,t,4 δ1,t, δ1,t,1 δ1,t,2 δ1,t,3 δ1,t,4 

= -1 150 0 24 26 28 - 0 0 0 0 0 

 

Constraints matrix 

 

  c1,t u1,t p1,t px1,t,1 px1,t,2 px1,t,3 px1,t,4 δ1,t, δ1,t,1 δ1,t,2 δ1,t,3 δ1,t,4 

= 0 0 0 -1 1 1 1 - - - - - - 

E 0 0 0 0 -1 0 0 - - - - - - 

E 0 0 0 0 0 -1 0 - - - - - - 

E 0 0 0 0 0 0 -1 - - - - - - 

E 30 0 0 0 1 0 0 - - - - - - 

E 50 0 0 0 0 1 0 - - - - - - 

E 20 0 0 0 0 0 1 - - - - - - 

 

 

  c1,t u1,t p1,t px1,t,1 px1,t,2 px1,t,3 px1,t,4 δ1,t, δ1,t,1 δ1,t,2 δ1,t,3 δ1,t,4 

lb  0 0 0 0 0 0 - - - - - - 

ub  Inf 1 inf inf inf inf - - - - - - 

x  0 1 0 0 0 0 - - - - - - 

 

 

For G3 at any hour 

c3,t = 50u3,t + 30px3,t,1 + 32px3,t,2   

p3,t = px3,t,1 + px3,t,2 

0 ≤ px2,t,1 ≤ 10 

0 ≤ px2,t,2 ≤ 20 

 

 

Start-up and shut-down indicators 
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For G1 at any hour 

y1,t - z1,t - u1,t + u1,(t-1) = 0 

y1,t + z1,t ≤ 1 

 

For G2 at any hour 

y2,t – z2,t – u2,t + u2,(t-1) = 0 

y2,t + z2,t ≤ 1 

 

For GN at any hour 

yN,t – zN,t – uN,t + uN,(t-1) = 0 

yN,t + zN,t ≤ 1 

 

Example for G1 for Hours 1 through 4 

 

objective function array 

 

f = 

 

 u1,1 y1,1 z1,1 u1,2 y1,2 z1,2 u1,3 y1,3 z1,3 u1,4 y1,4 z1,4 

= 0 0 0 0 0 0 0 0 0 0 0 0 

 

 

Constraints matrix 

 

  u1,1 y1,1 z1,1 u1,2 y1,2 z1,2 u1,3 y1,3 z1,3 u1,4 y1,4 z1,4 

= 0 -1 1 -1 0 0 0 0 0 0 0 0 0 

= 0 1 0 0 -1 1 -1 0 0 0 0 0 0 

= 0 0 0 0 1 0 0 -1 1 -1 0 0 0 

= 0 0 0 0 0 0 0 1 0 0 -1 1 -1 

E 1 0 1 1 0 0 0 0 0 0 0 0 0 

E 1 0 0 0 0 1 1 0 0 0 0 0 0 

E 1 0 0 0 0 0 0 0 1 1 0 0 0 

E 1 0 0 0 0 0 0 0 0 0 0 1 1 

 

For Hour 1 

  u1,1 p1,1 px1,1,1 px1,1,2 px1,1,3 px1,1,4 δ1,1 δ1,1,1 δ1,1,2 δ1,1,3 δ1,1,4 y1,1 z1,1 sr1,1 or1,1 

= 0 -1 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 

= 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

E 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 

E 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

E 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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For Hour 2 

 

 

For Hour 3 

 

 

Bounds Arrays 

 

 

  u1,1 y1,1 z1,1 u1,2 y1,2 z1,2 u1,3 y1,3 z1,3 u1,4 y1,4 z1,4 

lb  0 0 0 0 0 0 0 0 0 0 0 0 

ub  1 1 1 1 1 1 1 1 1 1 1 1 

x  1 1 1 1 1 1 1 1 1 1 1 1 

 

Notes: The arrays will be the same pattern for each generator but the combined array 

will have variables representative of each generator for each hour 

 

For a N Generator system with NT hours, there will be (3)X(N)X(NT) variables and 

(2)X(N)X(NT) rows. For the test case, 3 generators and 24 hours, there will be 216 

variables to represent the start-up and shut-down indicators and 144 rows with 

constraints.   

E 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  u1,2 p1,2 px1,1,2 px1,1,2 px1,1,2 px1,1,2 δ1,2 δ1,1,2 δ1,2,2 δ1,2,3 δ1,2,4 y1,2 z1,2 sr1,2 or1,2 

= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

= 0 -1 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 

= 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

E 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

E 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 

E 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

E 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  u1,3 p1,3 px1,1,3 px1,1,3 px1,1,3 px1,1,3 δ1,3 δ1,3,1 δ1,3,2 δ1,3,3 δ1,3,4 y1,3 z1,3 sr1,3 or1,3 

= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

= 0 -1 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 

= 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

E 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

E 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

E 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 

E 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Combined objective function 

 

f = [G1variables Hour1 G1 variables Hour 2 …. G1 variables Hour NT G2variables 

Hour1 G2 variables Hour 2 …. G2 variables Hour NT …. GNvariables Hour1 GN 

variables Hour 2 …. GN variables Hour NT] 

 

Similar procedure as above can be applied to combine the equality and inequality 

constraints and upper, lower bounds, and integer array.  

 

 

Start-up and Shut-down Costs 
 

 

 

 

 

For the test case: 

 

 

 

 

 

 

 

 

 

For G1 

 

f = 

 

 u1,1 y1,1 z1,1 u1,2 y1,2 z1,2 u1,3 y1,3 z1,3 u1,4 y1,4 z1,4 

= 0 100 50 0 100 50 0 100 50 0 100 50 

 

Similar process is used for G2 and G3 variables in the objective function 

 

 

Capacities 

 

 
 

 

For any hour 

 

G1: 

100u1,t ≤ px1,t ≤ 220u1,t 
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G2 

10u2,t ≤ px2,t ≤ 100u2,t 

G3 

10u2,t ≤ px1,t ≤ 20u2,t 

 

For the first 4 hours for G1 

 

Constraints matrix 

 

 

 

 

  u1,1 px1,1 u1,2 px1,2 u1,3 px1,3 u1,4 px1,4 

E 0 -220 1 0 0 0 0 0 0 

E 0 100 -1 0 0 0 0 0 0 

E 0 0 0 -220 1 0 0 0 0 

E 0 0 0 100 -1 0 0 0 0 

E 0 0 0 0 0 -220 1 0 0 

E 0 0 0 0 0 100 -1 0 0 

E 0 0 0 0 0 0 0 -220 1 

E 0 0 0 0 0 0 0 100 -1 

 

 

  u1,1 px1,1 u1,2 px1,2 u1,3 px1,3 u1,4 px1,4 

lb  0 0 0 0 0 0 0 0 

ub  1 inf 1 inf 1 inf 1 inf 

x  1 0 1 0 1 0 1 0 

 

 

Note the objective function should remain unchanged for this subpart of the MILP 

problem 

 

 

 

 

  u1,1 p1,1 px1,1,1 px1,1,2 px1,1,3 px1,1,4 δ1,1 δ1,1,1 δ1,1,2 δ1,1,3 δ1,1,4 y1,1 z1,1 sr1,1 or1,1 

0 0 -220 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 100 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Reserves 

 

Spinning Reserve 

 

 

 

 

Operating Reserve 
 

 

 

For any hour the test case can be modeled as: 

 

For G1: 

p1,t + sr1,t ≤ 220 

0 ≤ sr1,t, ≤ u1,t(10*2) 

or1,t = sr1,t + (1 – u1,t)15 

 

For G2: 

p2,t + sr2,t ≤ 100 

0 ≤ sr2,t, ≤ u2,t(10*1.5) 

or2,t = sr2,t + (1 – u2,t)10 

 

For G3: 

p3,t + sr3,t ≤ 20 

0 ≤ sr3,t, ≤ u3,t(10*0.5) 

or3,t = sr3,t + (1 – u3,t)10 

 

 

Example for G1 for Hours 1 through 3 

 

constraints 

 

  u1,1 p1,1 sr1,1 or1,1 u1,2 p1,2 sr1,2 or1,2 u1,3 p1,3 sr1,3 or1,3 

= 15 15 0 -1 1 0 0 0 0 0 0 0 0 

E 220 0 1 1 0 0 0 0 0 0 0 0 0 

E 0 -10*2 0 1 0 0 0 0 0 0 0 0 0 

E 0 0 0 -1 0 0 0 0 0 0 0 0 0 

= 15 0 0 0 0 15 0 -1 1 0 0 0 0 

E 220 0 0 0 0 0 1 1 0 0 0 0 0 

E 0 0 0 0 0 -

10*2 

0 1 0 0 0 0 0 

E 0 0 0 0 0 0 0 -1 0 0 0 0 0 

= 15 0 0 0 0 0 0 0 0 15 0 -1 1 

E 220 0 0 0 0 0 0 0 0 0 1 1 0 
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E 0 0 0 0 0 0 0 0 0 -

10*2 

0 1 0 

E 0 0 0 0 0 0 0 0 0 0 0 -1 0 

 

 

 

Ramping Constraints 

 
 

 

 

 

For the test case  

 

G1 at any hour 

p1,t – p1,t-1 ≤ y1,t100 + (1-y1,t)40 

p1,t-1 – p1,t ≤ z1,t100 + (1-z1,t)50 

 

G2 at any hour 

p2,t – p2,t-1 ≤ y2,t10 + (1-y2,t)30 

p2,t-1 – p2,t ≤ z2,t10 + (1-z2,t)25 

 

G3 at any hour 

p3,t – p3,t-1 ≤ y3,t10 + (1-y3,t)20 

p3,t-1 – p3,t ≤ z3,t10 + (1-z3,t)20 

 

 

Example for G1 for Hours 1 through 4 

 

constraints 

 

  p1,1 y1,1 z1,1 p1,2 y1,2 z1,2 p1,3 y1,3 z1,3 

E 40 1 -(100-40) 0 0 0 0 0 0 0 

E 50 -1 0 -(100-50) 0 0 0 0 0 0 

E 40 -1 0 0 1 -(100-40) 0 0 0 0 

  u1,1 p1,1 px1,1,1 px1,1,2 px1,1,3 px1,1,4 δ1,1 δ1,1,1 δ1,1,2 δ1,1,3 δ1,1,4 y1,1 z1,1 sr1,1 or1,1 

0 0 -220 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 100 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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E 50 1 0 0 -1 0 -(100-50) 0 0 0 

E 40 0 0 0 -1 0 0 1 -(100-40) 0 

E 50 0 0 0 1 0 0 -1 0 -(100-50) 

E 40 0 0 0 0 0 0 -1 0 0 

E 50 0 0 0 0 0 0 1 0 0 

 

 

 

Minimum Up/Down Time 

 
Minimum Up Time 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Minimum Down Time 
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System Load Balance and Reserve Requirements 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Example for G1 and G2 for Hours 1 through 2 

 

objective function 

 

constraints 

 

  p1,1 sr1,1 or1,1 p1,2 sr1,2 or1,2 p2,1 sr2,1 or,21 p2,2 sr2,2 or2,2 

= -D1 1 0 0 0 0 0 1 0 0 0 0 0 

= -D2 0 0 0 1 0 0 0 0 0 1 0 0 

E -SR1 0 -1 0 0 0 0 0 -1 0 0 0 0 

E -SR2 0 0 0 0 -1 0 0 0 0 0 -1 0 

E -OR1 0 0 -1 0 0 0 0 0 -1 0 0 0 

E -OR2 0 0 0 0 0 -1 0 0 0 0 0 -1 
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Algorithms 
 

Determine Function Type 

  

  

 

Start matrix, generate other hours 

Many of the subcomponents of the unit commitment program had a common 

algorithm. First there was the constraint matrix for the first hour. Subsequent matrices 

were dependent upon the values from hour 1. Also, these other matrices were formed 

using dynamic references. For example, if the matrix from hour 4 was formed, it was 

based off the matrix from hour 3. The matrix from hour 2 was formed off the basis from 

hour 1. Thus only the first hour need be programmed well and the following hours have 

values that stem from the previous hour but are shifted either vertically or horizontally, 

but most of the time vertically in the matrix. The amount of shift is static and determined 

by looking at patterns for the test case matrices shown in the formulation section of the 

report. Once a common shift pattern is know, it is programmed and then tested.  

 

 

 

 

 

 

 

For 1:length(price) 

  Is value(price) < previous value 

     Yes  non-convex function 

     No  convex function 

Is this matrix coordinate within the first hour? 

  

Yes 

   Is this cell coordinate (x,y) == K ? 

     Yes 

        Set Value  

     No 

        Is this cell coordinate (k,l) == M ? 

          Yes 

             Set Value  

          No 

           …………………………………… 

No 

   Set value of (x,y) to value of (x - shift,y - shift) 
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III. Security-Constraints 

 

Formulation 
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Procedures 
 

In lieu of not completing the program for the security portion of the programming 

project, process flows will illustrate a technique for completion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Import Line Impedances 

Create B, Admittance Matrix 

Form the Pg-Pd + y/x matrix =  P 

Solve for the angles, theta.  

 P = b*theta 

Eliminate the reference bus values to help solve the theta values 

Form Line Flows, PL(1-2) = (theta1 – theta2 – y12)/x12 

   For 1-N lines 

Determine shift factors, add to the PTDF 

Enter the equations into the constraint matrix 

Enter line flow limits into the constraint matrix 

Enter the phase shifter limits into the constraint matrix 

Create bounds, xint 

Add the A,Ae,b,be,lb,ub,xint to the unit commitment A,Ae,b,be,lb,ub,xint matrices. 

Run the MIP 
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IV. Commentary 

 

Conclusions 
 

The SCUC programming project was a challenge that was not completed due to 

the author’s time constraints (see project planning). The unit commitment portion had 

each subcomponent minus the minimum uptime/downtime completed and only for non-

convex generator price functions. At the end of the project deadline, the program 

encounter bugs for the convex price functions that were not fixed due to the deadline. The 

MATLAB code in the appendix will demonstrate the unit commitment functionality for a 

non-convex function, generator one in the test case example. 

 

Project Planning 
 

I would like to add some personal commentary to the project. Firstly I spent lots 

of hours (> 20) on the final project only to have to abruptly end . I started the final project 

about 2 weeks from the deadline because of having to work on coursework and 

homework for two classes. I had a few wrong starts in the program design. I came to a 

few road blocks in generating some code to loop the subcomponents. In the few days 

before the deadline only did I become proficient in the process of developing 

subcomponents for the SCUC and fully understanding the security portion with the help 

of the last assignment due. Other personal blocks constrained my time available for the 

project: working full-time, taking another course, having to move entirely to a different 

apartment, being sick,etc. If I could redo the project, I would have started a month before 
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the deadline, on the unit commitment portion, even though security-based assignments 

was not addressed until the past few weeks. One month development time seems more 

feasible than two weeks project planning. But I must add, that pursing the programming 

project offered more of an enjoyable challenge that writing a paper. I’m still glad that I 

chose the programming project even though was not completed! 
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V. Appendix 

  
MATLAB Code – Main Program to formulate unit commitment 

for a non-convex function 

 
% Generator # 1 Information 
noload = [200]; 

startupcost=[100]; 

shutdowncost=[50]; 
price = [20 25 24 23]; 

quantity = [40 60 80 40]; 

NT = [24]; 

PMIN= [100]; 

PMAX= [220]; 

QSC = [15]; 
MSR = [2]; 

RU = [40]; 

RD = [50]; 
D =  [175.19 165.15 158.67 154.73 155.06 160.48 173.39 177.6 186.81 206.96 228.61 236.1 242.18 243.6 248.86 255.79 256 246.74 

245.97 237.35 237.31 232.67 195.93 195.6]; 

SR = [2.63 2.48 2.38 2.32 2.33 2.4 2.6 2.85 3.09 3.26 3.43 3.54 3.63 3.66 3.73 3.84 3.84 3.7 3.69 3.56 3.56
 3.41 3.02 2.95]; 

OR = [12.26 11.56 11.1 10.83 10.85 11.23 12.14 13.33 14.39 15.2 16 16.52 16.95 17.05 17.42 17.91 17.92 17.27 17.22 

16.62 16.62 15.9 14.07 13.78]; 
 

% Create objective function, constraints, bounds, based on generator values 

% listed above 
 

[f,Aeq,beq,Aeinq,beinq,lb,ub,x]=generator(noload,startupcost,shutdowncost,price,quantity,NT,PMIN,PMAX,QSC,MSR,RU,RD,D,S

R,OR); 

 

A = Aeinq; 

b = beinq; 
xint = x; 

clear Aeinq, clear beinq, clear x; 

 
% Call MIP solver 

[x,fval,exitflag,output,lambda]=mipprog(f,A,b,Aeq,beq,lb,ub,xint); 

 
% output results 

x 

 
% objective function value 

fval 
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MATLAB Code – Generator function  

 
%generator  Makes generator objective function and constraints 

% 

%  SYNOPSIS: [f,Aeq,beq,Aeinq,beinq,lb,ub,x]=generator(noload,startupcost,shutdowncost,price,quantity, NT) 
% 

%  Determines type of price function (non-convex or convex) 

%  Depending on type, makes objective function, equality constraints, 
%  inequality constraints, lower bounds, upper bounds, and x 

%  (integer/continous) array for 1 generator given a 1XN array for the 

%  price, a 1XN array for the quantity, and a 1X1 array with the noload 
%  cost, startup cost, and shut down cost. Everything else is dynamically created. 

%  NT is the number of hours under study, other variables are defined. 

 
 

function 

[f,Aeq,beq,Aeinq,beinq,lb,ub,x]=generator(noload,startupcost,shutdowncost,price,quantity,NT,PMIN,PMAX,QSC,MSR,RU,RD,D,S

R,OR) 

 

% 
% Determine Function Type 

% 

 
% Dummy Variables 

temp = price(1); 
flag1 = 0; 

 

for i=2:length(price) 
if price(i) < temp 

    flag1 = 1; 

else 
    temp = price(i); 

end; 

end; 
 

% 

% If flag1 = 1, this is a non-convex function (the price decreases) 
% If flag1 = 2, this is a convex function, the price is non-decreasing 

% 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Non-Convex Function 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

if flag1 == 1 
    % Form non-convex functions     

    c = zeros(1,length(price)); 

    for i=1:length(c) 
        c(i) = price(i);         

    end;     

     
    % generate p variables 

    p = zeros(1,length(price)); 

    p(1) = 1; 
    for i=1:length(p) 

        p(i) = 1; 

    end; 
     

    % generate delta variables 

    d = zeros(1,length(price)); 
    d(1) = 1; 

    for i=1:length(d) 

        d(i) = 1; 
    end;    

     

    u = zeros(1,1+length(d)); 
    f = zeros(1,length(u)); 
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    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    % Objective function 

    f1 = [noload 0 c f startupcost shutdowncost 0 0]; 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    f = []; 

    for i=1:NT 
        f = [f f1]; 

    end; 

     
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    % Equality constraints 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    e = zeros(1,length(d)); 

    e = [0 -1 p 0 e 0 0 0 0]; 

    Aeq = []; 
    for i=1:NT 

     Aeq = [Aeq e]; 

    end; 

     

    beq = [0]; 

     
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    % Inequality contraints 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     

     % this generates the constraint array 
    %make temp array 

    temp = zeros(1,length(price)); 

    t = [-1;1]; 
    s = [0;0]; 

    temp2 = []; 

    for i=1:length(price) 
      for j=1:length(price)  

         if i == 1 

           if j ==1    
             temp2 = [t];  

           else 

             temp2 = [temp2 s]; 
           end; 

         else 

           
          if j == i  

            temp2 =  [temp2 t]; 

          else 
            temp2  = [temp2 s];  

          end;         

         end;    
      end;       

    end;   

temp2; 
j=1; 

k = length(price); 

temp3 = []; 
for i=1:length(price) 

 temp3 = [temp3; temp2(1:2,j:k)]; 

 j = j + length(price); 
 k = k + length(price); 

end; 

temp3; 
 

mastermatrix = temp3; 

deltamatrix = mastermatrix; 
 

pcolumn = [zeros(1,length(mastermatrix))]'; 

scolumn = [zeros(1,length(mastermatrix))]'; 
ocolumn = [zeros(1,length(mastermatrix))]'; 

ycolumn = [zeros(1,length(mastermatrix))]'; 

zcolumn = [zeros(1,length(mastermatrix))]'; 
dcolumn = [zeros(1,length(mastermatrix))]'; 
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ccolumn = [zeros(1,length(mastermatrix))]'; 

ucolumn = [0 -quantity(1) zeros(1,length(mastermatrix)-2)]'; 

 

% temp2(1:2,i:j)      
% temp2(1:2,1:3) i                  j = length(p)     

% temp2(1:2,4:6) i = i + length(p)  j = j + length(p) 

% temp2(1:2,7:9) i = i + length(p)  j = j + length(p) 
 

% add the zero column 

 
mastermatrix = [ucolumn pcolumn mastermatrix dcolumn]; 

 

% add the delta values 
 

for i=1:length(deltamatrix) 

    for j =1:length(deltamatrix)/2 
        deltamatrix(i,j) = 0;     

    end; 

end; 

 

 

% add delta values 
 

for i=1:length(deltamatrix) 

    for j =1:length(deltamatrix)/2 
        if i == 1 && j == 1 

            deltamatrix(i,j) = quantity(1);   
        else 

           if i == length(deltamatrix) &&  j == length(deltamatrix)/2 

             deltamatrix(i,j) = -quantity(length(quantity));  
           else              

            if (j > 1 && j < length(deltamatrix)/2) && (i > 2 && i < length(deltamatrix)-1)  

 
                if (j*2 == i) || (j*2-1 == i) 

                        if j*2 == i 

                           deltamatrix(i,j) = -quantity (j); 
                        else 

                           deltamatrix(i,j) = quantity(j);  

                        end; 
                else 

                deltamatrix(i,j) = 0;                     

                end; 
                     

                 

            else                       
                

               deltamatrix(i,j) = 0; 

           end;    
                

           end;    

             
        end;    

    end; 

end; 
 

     

 
mastermatrix = [mastermatrix deltamatrix ycolumn zcolumn scolumn ocolumn];     

 

 
Aeinq = []; 

 

for i=1:NT    
    Aeinq = [Aeinq mastermatrix]; 

end; 

 
beinq = zeros(1,2*length(quantity))'; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Start-up and Shut-down Indicators 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%% 

n = 6*length(price); 

m = length(Aeinq); 
 

%Initialize first array to zero 

Aeq2 = zeros(n,m); 
 

for j=1:m 

        for i=1:n 
       if i == 1 && j == 1 

           Aeq2(i,j) = -1; 

           Aeq2(i+1,j) = 1; 
       else 

           if ((j == 2*length(price) +4) && i == 1) 

           Aeq2(i,j) = 1; 

           Aeq2(i,j+1) = -1;              

           else 

           if (i >1 && (j > 2*length(price)+7))     
           Aeq2(i,j) = Aeq2(i-1,j-(2*length(price)+7));          

           else 

           end; 
           end; 

            
       end; 

         

         
    end; 

end; 

 
beq2 = zeros(1,6*length(price))'; 

 

% Add to master equality arrays 
Aeq = [Aeq; Aeq2]; 

beq = [beq; beq2]; 

 
 

% Make Inequality arrays 

n = 6*length(price); 
m = length(Aeinq); 

 

%Initialize first array to zero 
Aeinq2 = zeros(n,m); 

 

for j=1:m 
     for i=1:n 

           if ((j == 2*length(price)+4) && i == 1) 

                Aeinq2(i,j) = 1; 
                Aeinq2(i,j+1) = 1;              

           else 

            if (i >1 && j > (2*length(price)+7))     
                Aeinq2(i,j) = Aeinq2(i-1,j-(2*length(price)+7));          

            else 

            end; 
           end; 

     end; 

end; 
 

beinq2 = ones(1,6*length(price))'; 

 
 

% Add to master equality arrays 

Aeinq = [Aeinq; Aeinq2]; 
beinq = [beinq; beinq2]; 

 

 
 



 36 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Capacity constraints 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
n = 2*NT; 

m = length(Aeq); 

 
%Initialize first array to zero 

Aeq2 = zeros(n,m); 

 
for j=1:m 

        for i=1:n 

       if i == 1 && j == 2 
           Aeq2(i,j) = PMIN; 

           Aeq2(i+1,j) = -PMAX; 

           Aeq2(i,j+1) = 1; 
           Aeq2(i+1,j+1) = -1; 

       else 

           if (i >2 && j > (2*length(price)+7))     

           Aeq2(i,j) = Aeq2(i-2,j-(2*length(price)+7));          

           else 

           end; 
            

       end; 

         
         

    end; 
end; 

 

beq2 = zeros(1,2*NT)'; 
 

% Add to master equality arrays 

Aeq = [Aeq; Aeq2]; 
beq = [beq; beq2]; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Reserves 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
n = NT; 

m = length(Aeq); 

 
%Initialize first array to zero 

Aeq2 = zeros(n,m); 

 
for j=1:m 

        for i=1:n 

       if i == 1 && j == 1 
           Aeq2(i,j) = QSC; 

           Aeq2(i,j+2*length(price)+5) = -1; 

           Aeq2(i,j+2*length(price)+6) = 1; 
       else 

           if (i >1 && j > (2*length(price)+7))     

           Aeq2(i,j) = Aeq2(i-1,j-(2*length(price)+7));          
           else 

           end; 

            
       end; 

         

         
    end; 

end; 

 
beq2 = 15*ones(1,NT)'; 

 

% Add to master equality arrays 
Aeq = [Aeq; Aeq2]; 

beq = [beq; beq2]; 
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n = 3*NT; 

m = length(Aeinq); 

 

%Initialize first array to zero 
Aeinq2 = zeros(n,m); 

 

for j=1:m 
      for i=1:n 

       if i == 2 && j == 1 

           Aeinq2(i,j) = -10*MSR; 
           Aeinq2(i-1,j+1) = 1; 

           Aeinq2(i-1,j+2*length(price)+5) =  1; 

           Aeinq2(i,j+2*length(price)+5) =  1; 
           Aeinq2(i+1,j+2*length(price)+5) =  -1; 

       else 

           if (i >3 && j > (2*length(price)+7))     
           Aeinq2(i,j) = Aeinq2(i-3,j-(2*length(price)+7));          

           else 

           end; 

            

       end; 

         
         

    end; 

end; 
beinq3 = [PMAX 0 0]; 

beinq2 = []; 
for i=1:NT 

   beinq2 = [beinq2 beinq3]; 

end; 
beinq2 = beinq2'; 

 

% Add to master equality arrays 
Aeinq = [Aeinq; Aeinq2]; 

beinq = [beinq; beinq2]; 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Ramping constraints 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 

n = 2*NT; 

m = length(Aeq); 
 

%Initialize first array to zero 

Aeq2 = zeros(n,m); 
 

for j=1:m 

        for i=1:n 
       if i == 1 && j == 2 

           Aeq2(i,j) = 1; 

           Aeq2(i+1,j) = -1; 
           Aeq2(i+2,j) = -1; 

           Aeq2(i+3,j) = 1; 

           Aeq2(i,j+2*length(price) + 2) = -(PMIN-RU); 
           Aeq2(i+1,j+2*length(price) + 3) = -(PMIN-RD); 

            

       else 
           if (i >2 && j > (2*length(price)+7))     

           Aeq2(i,j) = Aeq2(i-2,j-(2*length(price)+7));          

           else 
           end; 

            

       end; 
         

         

    end; 
end; 

 

beq3 = [RU RD]; 
beq2 = []; 
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for i=1:NT 

    beq2 = [beq2 beq3]; 

end; 

 
beq2 = beq2'; 

 

 
 

% Add to master equality arrays 

Aeq = [Aeq; Aeq2]; 
beq = [beq; beq2]; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%% 

% System Load Balance and Reserve Requirements 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

%%%%%%%%%%%%%%%%%%%%%%%% 

% Load Balance 

%%%%%%%%%%%%%%%%%%%%%%% 
 

n = NT; 

m = length(Aeq); 
 

%Initialize first array to zero 
Aeq2 = zeros(n,m); 

 

for j=1:m 
        for i=1:n 

       if i == 1 && j == 2 

           Aeq2(i,j) = 1; 
       else 

           if (i >1 && j > (2*length(price)+7))     

           Aeq2(i,j) = Aeq2(i-1,j-(2*length(price)+7));          
           else 

           end; 

            
       end; 

         

         
    end; 

end; 

 
beq2 = -[D]'; 

 

% Add to master equality arrays 
Aeq = [Aeq; Aeq2]; 

beq = [beq; beq2]; 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Spinning Reserve Balance 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 

n = NT; 

m = length(Aeinq); 
 

%Initialize first array to zero 

Aeinq2 = zeros(n,m); 
 

for j=1:m 

        for i=1:n 
       if i == 1 && j == 14 

           Aeinq2(i,j) = -1; 

       else 
           if (i >1 && j > (2*length(price)+7))     

           Aeinq2(i,j) = Aeinq2(i-1,j-(2*length(price)+7));          

           else 
           end; 
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       end; 

         

         
    end; 

end; 

 
beinq2 = -[SR]'; 

 

% Add to master equality arrays 
Aeinq = [Aeinq; Aeinq2]; 

beinq = [beinq; beinq2]; 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Operating Reserve Balance 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 

 

n = NT; 

m = length(Aeinq); 

 

%Initialize first array to zero 
Aeinq2 = zeros(n,m); 

 

for j=1:m 
        for i=1:n 

       if i == 1 && j == 15 
           Aeinq2(i,j) = -1; 

       else 

           if (i >1 && j > (2*length(price)+7))     
           Aeinq2(i,j) = Aeinq2(i-1,j-(2*length(price)+7));          

           else 

           end; 
            

       end; 

         
         

    end; 

end; 
 

beinq2 = -[OR]'; 

 
% Add to master equality arrays 

Aeinq = [Aeinq; Aeinq2]; 

beinq = [beinq; beinq2]; 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Upper Bounds 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

ub = []; 
for i=1:length(price) 

 ub = [ub inf];    

end; 
 

ub1 = [inf ub]; 

 
ub2 = ones(1,length(price)); 

ub2 = [1 ub2]; 

 
ub1 = [1 ub1 ub2 1 1 1 1]; 

ub = []; 

for i=1:NT 
    ub = [ub ub1]; 

end; 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Lower bounds 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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lb = zeros(1,length(Aeinq)); 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% xint array 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

x = []; 
for i=1:length(price) 

  x(i) = 1;     

end; 
 

x2 = []; 

for i = 1:length(price) 
  x2(i) = 0;   

end; 

 
x1 = [1 0 x2 1 x 1 1 1 1]; 

 

x = []; 

for i=1:NT 

    x = [x x1]; 

end; 
   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Convex Function 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 

 
else     

    % Form convex function 

    c = zeros(1,length(price)); 
    c(1) = 0; 

    for i=1:length(c) 

        c(i) = price(i);         
    end;     

     

    % generate p variables 
    p = zeros(1,length(price)); 

    p(1) = 1; 

    for i=1:length(p) 
        p(i) = 1; 

    end; 

     
    % generate delta variables  

    %  none needed in convex, but used for consistentcy 

    d = zeros(1,length(price)); 
     

     

    u = zeros(1,1+length(d)); 
    f = zeros(1,length(u)); 

    %objective function 

    f1 = [noload 0 c f startupcost shutdowncost 0 0]; 
    f = []; 

    for i=1:NT 

        f = [f f1]; 
    end; 

     

    %equality constraints 
    e = zeros(1,length(d)); 

    e = [0 -1 p 0 e 0 0 0 0]; 

    Aeq = [] 
     

    for i=1:NT 

      Aeq = [Aeq e]; 
    end; 
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    beq = [0]; 

 

    %inequality constraints 

     
    %make temp array 

    temp = zeros(length(p)); 

    for i=1:length(p) 
        for j=1:length(p) 

        if i == j 

            temp(i,j) = -1; 
        else 

            temp(i,j) = 0; 

        end;     
        end;         

    end; 

     
    temp = [temp]; 

     

    temp2 = zeros(length(p)); 

    for i=1:length(p) 

        for j=1:length(p) 

        if i == j 
            temp2(i,j) = 1; 

        else 

            temp2(i,j) = 0; 
        end;     

        end;         
    end;    

     

    temp2 = [temp2];    
    % This is the inequality matrix 

    Aeinq = [temp; temp2]; 

    [m,n] = size(Aeinq); 
     

    mcolumn= zeros(1,m)'; 

    e = [mcolumn mcolumn Aeinq mcolumn zeros(m,n) mcolumn mcolumn mcolumn mcolumn]; 
    Aeinq = []; 

    for i=1:NT 

     Aeinq = [Aeinq e];    
    end; 

     

     
    % make the b equations 

    temp = zeros(1,length(quantity)); 

    beinq = [temp'; quantity'];  
        

     

 
     

     

     
     

     

     
     

     

     
     

% create upper bound 

 
ub = []; 

for i = 1:length(price)+1 

  ub(i) = inf;   
end; 

 

ub = [inf 1 ub]; 
 

% create lower bound 

lb = zeros(1,length(Aeinq)); 
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% create x array 

 

x = []; 

for i=1:length(price)+1 
  x(i) = 0;     

end; 

 
x = [0 1 x]; 

 

 
end; 

 

output=[]; 


