
 1

Security-Constrained Unit Commitment

Programming Project

May 9th, 2005

ECE 556

Power Market Operations

-Kathleen E. Williams

Abstract – This paper discusses the security-constrained unit commitment programming

project guidelines, formulations, high-level and low-level programming, and procedures to

complete a secure and economical system model. Low level programming was completed for

the unit commitment portion. In lieu of security program, a high-level process flow will show

security based constraints due to the author’s own constraints discussed in the comments

section of the report.

 2

Table of Contents

I. Introduction

 A.) Problem Definition Pages 4-7

 B.) Game Plan Pages 8-9

 C.) Program Components Pages10-12

 D.) Process Flow Pages13-14

II. Unit Commitment

A.) Formulation Pages15-25

B.) Algorithms Pages 26

III. Security-Constraints

A.) Formulation Pages 27

B.) Procedures Pages 28

IV. Commentary

 A.) Conclusions Pages 29

 B.) Project Planning Pages29-30

V. Appendix Pages30-42

 Matlab code for generating unit commitment

 3

Introduction

 Security-Constrained Unit Commitment (SCUC) consists of two components,

system security and economic dispatch. The objective of the problem is focused solely on

the economic dispatch of generators with bidding segments, no load costs, starting costs,

and other costs incurred during operation. Least cost is desired according to the system

operators. Simple economics dictates that generators can supply (X) MW of power at

location xyz and deliver the power through the transmission lines L123. However, this is

not such a simple problem of who can “bid the lowest price” and win the contract in a

short period of time. Location, transmission design, and the generator’s operating

efficiencies are conglomerated together to form a complex set of questions that the

system operators must answer using analysis before awarding contracts to independent

power producers. Thus, much planning and analysis is needed to determine the minimal

cost that satisfies system security.

 The power market operations course, ECE 556, at the Illinois Institute of

Technology has set guidelines to help make cost-effect and secure dispatch decisions for

diverse system models. The final project for the course outlines a good practice problem

of determining the least-cost dispatch for three generators, 5 transmission lines, phase

shifters, and bidding segments. The problem definition will describe the project overview

with given information and final expectations. The game plan will then be drawn to show

how the author tackled the challenge. Program components are discussed to categorize

the project portions into manageable sub-programming projects. Finally the process flow

shows a high-level procedure for the life of the program.

 4

Problem Definition

The final project instructions dictated that a program be written to automatically

formulate, compute, and solve the security-constrained unit commitment model.

The testing system, a 6-bus system, depicted in Figure 1, has 3 units, 5 transmission lines,

and 2 phase shifting transformers. System load and reserve requirements over the 24-hour

horizon are shown in Table 1. Individual unit constraints are shown in Table 2. Unit

bidding information is shown in Table 3. It is assumed that bidding for all the hours are

the same. Variable startup cost information is shown in Table 4. Transmission line data

are shown in Table 5. Phase shifting transformer data are shown in Table 6. Load

distribution factors are shown in Table 7.

 5

 6

 7

The consideration of phase-shifters and variable start-up costs was optional in the final

project problem definition.

 8

Game Plan

The approach on the project should have been at least a month before the due date

to allow for plenty of time to tackle bugs in the program and formulations. The author’s

approach was to tackle each sub problem of the unit commitment separately and combine

the constraints and objective functions together into one master matrix to be processed by

the MIP program. The project began determining a cost formulation for the test case

generators. It was clear that the price of the generator would influence the formulation

and the programming of the objective function and constraints. Formulation was done for

every test case generator and a “variable-matrix” was formed to represent all the indicator

variables, continuous variables, etc that the individual price and quantities formulated.

Only the first few hours were used to test the program and generate constraints like the

cost function for the generators. The author learned to develop algorithms to generate

common patterns for NT (number of hours) hours. The start-up and shut-down indicators

were formulated for the test case generators at any hour. Sample data was manually

entered into excel from the formulations for the first test case generator and for the first

few hours. The author then developed, after many long hours and failed attempts, loops

to generate the correct matrices for hours 1:NT. The objective matrix, f, and the

constraints, A, and Ae, were then exported from MATLAB using –ascii commands and

then imported into excel. The output from the program was then compared against the

expected output for the first few hours. “If”-else” statements, generated in excel,

highlighted the programming output cells that deviated from the expected results. If the

routines worked, they were added to the master program and the additional constraints

were added to the master constraint matrix in the program. This process of write

 9

formulations, manually enter in first few hours test case generator 1, develop algorithm,

write code, test code, export output, and lastly compare output to formulations continued

for every subcomponent of the unit commitment.

 10

Program Components

Unit Commitment

Cost Functions

 For each test generator, there are bidding prices for each segment of MW

generated. Segment prices can be either non-convex or convex. The prices are used in the

objective function and it is desired to minimize these costs. The constraints for the

formulations are also included.

Start-up and Shut-down indicators

 These indicators represent the status of the generator, whether it is starting up or

shutting down. Indicators are used for NT hours (24 hours in the case) and are useful in

other formulations.

Start-up and Shut-down costs

 Additional costs associated with the above start-up and shut-down indicators. It is

the objective to minimize these costs throughout the system and throughout NT hours.

Capacities

 Each test case generator has a minimum capacity it is willing to generate as being

committed and a maximum capacity. These min and max limits are formulated as

constraints for each generator for NT hours.

 11

Reserves

 The 10-minute spinning reserve of a unit is the unloaded synchronized generation

that can ramp up in 10 minutes. The spinning reserve of a unit cannot exceed the

difference between its maximum capacity and current generation. It is also limited by the

10-minute maximum sustained rate. Operating reserve is the unloaded

synchronized/unsynchronized generating capacity that can ramp up in 10 minutes. When

a unit is in operation, its operating reserve is the same as spinning reserve. When a unit is

down, its operating reserve is the same as its quick start capability. These limits are

represented as constraints with their respective indicator variables.

Ramping Constraints

From one hour to the next, a unit cannot increase its output above a maximum

increment, which is called the ramping up limit. Similarly, a unit cannot decrease its

output above a maximum decrement, which is called the ramping down limit. These

limits are represented as constraints with indicator variables.

Minimum uptime/downtime constraints

Minimum up time constraint implies that a unit must stay in operation for a certain

number of hours before it can be shut down; minimum down time constraint implies that a unit

must remain down for a certain number of hours before it can be brought online. Indicator

variables can be used to represent these limits in the constraints.

System load balance and reserve requirements

 12

These are constraints that the generators must meet the set load D, spinning

reserve requirements, and operating reserve requirements. These constraints are also

represented using indicator variables.

Variable Start-Up Costs

These costs were not considered in the project, however, they are time sensitive

and depend on previous hour status.

Security

DC Power Flow

DC power flow is used a quick solution to the test case system. The bus, load, and

line data is entered into the program as arrays. The impedance matrices can be

determined.

Power Transfer Distribution Factors

Based on the system bus, line, and load data, PTDF’s can be formulated for each

bus 1-N, N-N, and then represented as constraints using indicator variables. Line flow

and phase shifter limits must also be included.

 13

Process Flow

Flow diagrams will illustrate some high-level processes for the program. The first

diagram, Figure 2, shows the game plan process for each subcomponent.

Subcomponent

Formulate for

Test Case

Enter into Excel,

Determine variables

Develop Algorithm to

suit test case

subcomponent data

Implement into

MATLAB. Export

Output. Compare to

Expected

Does MATLAB

output match the test

case expectations for

1-N test hours?

Complete

subcomponent. Add to

master MIP program

matrices.

YES NO

 14

Figure 3 shows a description of the two parts of the program project. Only the unit

commitment portion was completed except for the minimum uptime/down time

component.

Program Flow Diagram

INPUTS

Generator = [price, bidding segment, MW, minimum

capacity, maximum capacity, no-load cost, start-up cost, shut-

down cost, minimum up time, minimum down time, ramp-up

rate, ramp-down rate, MSR, QSC, Initial Status, Initial Hour,

Initial MW, system load, spinning reserve, operating reserve]

Line = [from, to, r, x, flow limit]

Load = [bus, percentage of system load]

Unit Commitment

For 1:N Generators()

 Costs represented in the objective function ($/MWh, start-up, shut-down, no-load)

 Price variable constraints, bidding segment constraints

 Minimum capacity, maximum capacities and other constant variables

 Upper bounds, lower bounds, variable array (integer/continuous). Every

 subcomponent for the unit commitment has the constraints represented in matrix

 form for A, Ae, b, be, xint, lb,ub, and f.

Summary – When the function completes, each generator will have a MIP objective function, equality and inequality

arrays, upper bounds, lower bounds, and x-array. Since the generator constants do not change for each hour, there

will be only one MIP for each generator usable for hours 1:N. These will be master reference arrays for calculating

other components of the program. Each subcomponent for the unit commitment is represented inside the generator

function because the generator influences the unit commitment. Each subcomponent also generates its own f, A, Ae,

b, be, xint, lb, ub, and f matrices. When the subcomponent procedure is complete, the results are added to the master

matrices representing the unit commitment MIP.

Inputs:

 (noload,startupcost,shutdowncost,price,quantity,NT,PMIN,PMAX,QSC,MSR,RU,RD,D,SR,OR)

Outputs:

(f,Aeq,beq,Aeinq,beinq,lb,ub,x)

INPUTS

Generator = [price, bidding segment, MW, minimum

capacity, maximum capacity, no-load cost, start-up cost, shut-

down cost, minimum up time, minimum down time, ramp-up

rate, ramp-down rate, MSR, QSC, Initial Status, Initial Hour,

Initial MW, system load, spinning reserve, operating reserve]

Line = [from, to, r, x, flow limit]

Load = [bus, percentage of system load]

Security

For 1:N Buses()

Imports bus and lines data. Computes admittance matrix and calculates power transfer distribution

factors. Limits on the line flows are entered as constraints along with phase shift limits.

Summary – The PTDF are calculated for N buses for K lines. The constraints hold PTDF information and flow limits

Inputs:

 (line, frombus, tobus, r, x, flowlimit, pstrans, frombus, tobus, r, x , anglemax , anglemin, load, busno, percent)

Outputs:

(f,Aeq,beq,Aeinq,beinq,lb,ub,x)

 15

II. Unit Commitment

 This section of the final project for programming the SCUC will focus only on the

unit commitment portion of the problem. The formulation section lists all relevant

equations needed to form the unit commitment. The algorithms section discusses some

techniques in generating the constraints or implementing the formulation into MATLAB.

The appendix lists code referenced for unit commitment.

Formulation

Cost Functions

For a convex function the formulation is as follows:

Convex function

For a non-convex function, the formulation is as follows:

Non-convex function

Table 3 below represent the bidding segments and prices for the test case in the

assignment. Table 2a represents the test case unit capacities and no-load costs.

G1 is non-convex, G2 is convex, G3 is convex

 16

For G1 at any hour

c1,t = 200u1,t + 20px1,t,1 + 25px1,t,2 + 24px1,t,3 + 23px1,t,4

p1,t = px1,t,1 + px1,t,2 + px1,t,3 + px1,t,4

40δ1,t,1 ≤ px1,t,1 ≤ 40u1,t

60δ1,t,2 ≤ px1,t,2 ≤ 60δ1,t,2

80δ1,t,3 ≤ px1,t,3 ≤ 80δ1,t,3

0 ≤ px1,t,4 ≤ 40δ1,t,4

Objective Function Array

f =

Constraints Matrix

Bounds Arrays

u1,1 p1,1 px1,1,1 px1,1,2 px1,1,3 px1,1,4 δ1,1 δ1,1,1 δ1,1,2 δ1,1,3 δ1,1,4 y1,1 z1,1 sr1,1 or1,1

200 0 20 25 24 23 0 0 0 0 0 100 50 0 0

 u1,1 p1,1 px1,1,1 px1,1,2 px1,1,3 px1,1,4 δ1,1 δ1,1,1 δ1,1,2 δ1,1,3 δ1,1,4 y1,1 z1,1 sr1,1 or1,1

= 0 0 -1 1 1 1 1 0 0 0 0 0 0 0 0 0

E 0 0 0 -1 0 0 0 0 40 0 0 0 0 0 0 0

E 0 -40 0 1 0 0 0 0 0 0 0 0 0 0 0 0

E 0 0 0 0 -1 0 0 0 0 60 0 0 0 0 0 0

E 0 0 0 0 1 0 0 0 0 -60 0 0 0 0 0 0

E 0 0 0 0 0 -1 0 0 0 0 80 0 0 0 0 0

E 0 0 0 0 0 1 0 0 0 0 -80 0 0 0 0 0

E 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0

E 0 0 0 0 0 0 1 0 0 0 0 -40 0 0 0 0

 u1,1 p1,1 px1,1,1 px1,1,2 px1,1,3 px1,1,4 δ1,1 δ1,1,1 δ1,1,2 δ1,1,3 δ1,1,4 y1,1 z1,1 sr1,1 or1,1

lb 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ub 1 inf inf inf inf inf 1 1 1 1 1 1 1 1 1

x 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1

 17

For G2 at any hour

c2,t = 150u2,t + 24px2,t,1 + 26px2,t,2 + 28px2,t,3

p2,t = px2,t,1 + px2,t,2 + px2,t,3

0 ≤ px2,t,1 ≤ 30

0 ≤ px2,t,2 ≤ 50

0 ≤ px2,t,3 ≤ 20

objective function array

f =

 c1,t u1,t p1,t px1,t,1 px1,t,2 px1,t,3 px1,t,4 δ1,t, δ1,t,1 δ1,t,2 δ1,t,3 δ1,t,4

= -1 150 0 24 26 28 - 0 0 0 0 0

Constraints matrix

 c1,t u1,t p1,t px1,t,1 px1,t,2 px1,t,3 px1,t,4 δ1,t, δ1,t,1 δ1,t,2 δ1,t,3 δ1,t,4

= 0 0 0 -1 1 1 1 - - - - - -

E 0 0 0 0 -1 0 0 - - - - - -

E 0 0 0 0 0 -1 0 - - - - - -

E 0 0 0 0 0 0 -1 - - - - - -

E 30 0 0 0 1 0 0 - - - - - -

E 50 0 0 0 0 1 0 - - - - - -

E 20 0 0 0 0 0 1 - - - - - -

 c1,t u1,t p1,t px1,t,1 px1,t,2 px1,t,3 px1,t,4 δ1,t, δ1,t,1 δ1,t,2 δ1,t,3 δ1,t,4

lb 0 0 0 0 0 0 - - - - - -

ub Inf 1 inf inf inf inf - - - - - -

x 0 1 0 0 0 0 - - - - - -

For G3 at any hour

c3,t = 50u3,t + 30px3,t,1 + 32px3,t,2

p3,t = px3,t,1 + px3,t,2

0 ≤ px2,t,1 ≤ 10

0 ≤ px2,t,2 ≤ 20

Start-up and shut-down indicators

 18

For G1 at any hour

y1,t - z1,t - u1,t + u1,(t-1) = 0

y1,t + z1,t ≤ 1

For G2 at any hour

y2,t – z2,t – u2,t + u2,(t-1) = 0

y2,t + z2,t ≤ 1

For GN at any hour

yN,t – zN,t – uN,t + uN,(t-1) = 0

yN,t + zN,t ≤ 1

Example for G1 for Hours 1 through 4

objective function array

f =

 u1,1 y1,1 z1,1 u1,2 y1,2 z1,2 u1,3 y1,3 z1,3 u1,4 y1,4 z1,4

= 0 0 0 0 0 0 0 0 0 0 0 0

Constraints matrix

 u1,1 y1,1 z1,1 u1,2 y1,2 z1,2 u1,3 y1,3 z1,3 u1,4 y1,4 z1,4

= 0 -1 1 -1 0 0 0 0 0 0 0 0 0

= 0 1 0 0 -1 1 -1 0 0 0 0 0 0

= 0 0 0 0 1 0 0 -1 1 -1 0 0 0

= 0 0 0 0 0 0 0 1 0 0 -1 1 -1

E 1 0 1 1 0 0 0 0 0 0 0 0 0

E 1 0 0 0 0 1 1 0 0 0 0 0 0

E 1 0 0 0 0 0 0 0 1 1 0 0 0

E 1 0 0 0 0 0 0 0 0 0 0 1 1

For Hour 1

 u1,1 p1,1 px1,1,1 px1,1,2 px1,1,3 px1,1,4 δ1,1 δ1,1,1 δ1,1,2 δ1,1,3 δ1,1,4 y1,1 z1,1 sr1,1 or1,1

= 0 -1 0 0 0 0 0 0 0 0 0 0 1 -1 0 0

= 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

E 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 19

For Hour 2

For Hour 3

Bounds Arrays

 u1,1 y1,1 z1,1 u1,2 y1,2 z1,2 u1,3 y1,3 z1,3 u1,4 y1,4 z1,4

lb 0 0 0 0 0 0 0 0 0 0 0 0

ub 1 1 1 1 1 1 1 1 1 1 1 1

x 1 1 1 1 1 1 1 1 1 1 1 1

Notes: The arrays will be the same pattern for each generator but the combined array

will have variables representative of each generator for each hour

For a N Generator system with NT hours, there will be (3)X(N)X(NT) variables and

(2)X(N)X(NT) rows. For the test case, 3 generators and 24 hours, there will be 216

variables to represent the start-up and shut-down indicators and 144 rows with

constraints.

E 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 u1,2 p1,2 px1,1,2 px1,1,2 px1,1,2 px1,1,2 δ1,2 δ1,1,2 δ1,2,2 δ1,2,3 δ1,2,4 y1,2 z1,2 sr1,2 or1,2

= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= 0 -1 0 0 0 0 0 0 0 0 0 0 1 -1 0 0

= 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

E 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 u1,3 p1,3 px1,1,3 px1,1,3 px1,1,3 px1,1,3 δ1,3 δ1,3,1 δ1,3,2 δ1,3,3 δ1,3,4 y1,3 z1,3 sr1,3 or1,3

= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= 0 -1 0 0 0 0 0 0 0 0 0 0 1 -1 0 0

= 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

E 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 20

Combined objective function

f = [G1variables Hour1 G1 variables Hour 2 …. G1 variables Hour NT G2variables

Hour1 G2 variables Hour 2 …. G2 variables Hour NT …. GNvariables Hour1 GN

variables Hour 2 …. GN variables Hour NT]

Similar procedure as above can be applied to combine the equality and inequality

constraints and upper, lower bounds, and integer array.

Start-up and Shut-down Costs

For the test case:

For G1

f =

 u1,1 y1,1 z1,1 u1,2 y1,2 z1,2 u1,3 y1,3 z1,3 u1,4 y1,4 z1,4

= 0 100 50 0 100 50 0 100 50 0 100 50

Similar process is used for G2 and G3 variables in the objective function

Capacities

For any hour

G1:

100u1,t ≤ px1,t ≤ 220u1,t

 21

G2

10u2,t ≤ px2,t ≤ 100u2,t

G3

10u2,t ≤ px1,t ≤ 20u2,t

For the first 4 hours for G1

Constraints matrix

 u1,1 px1,1 u1,2 px1,2 u1,3 px1,3 u1,4 px1,4

E 0 -220 1 0 0 0 0 0 0

E 0 100 -1 0 0 0 0 0 0

E 0 0 0 -220 1 0 0 0 0

E 0 0 0 100 -1 0 0 0 0

E 0 0 0 0 0 -220 1 0 0

E 0 0 0 0 0 100 -1 0 0

E 0 0 0 0 0 0 0 -220 1

E 0 0 0 0 0 0 0 100 -1

 u1,1 px1,1 u1,2 px1,2 u1,3 px1,3 u1,4 px1,4

lb 0 0 0 0 0 0 0 0

ub 1 inf 1 inf 1 inf 1 inf

x 1 0 1 0 1 0 1 0

Note the objective function should remain unchanged for this subpart of the MILP

problem

 u1,1 p1,1 px1,1,1 px1,1,2 px1,1,3 px1,1,4 δ1,1 δ1,1,1 δ1,1,2 δ1,1,3 δ1,1,4 y1,1 z1,1 sr1,1 or1,1

0 0 -220 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 100 -1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 22

Reserves

Spinning Reserve

Operating Reserve

For any hour the test case can be modeled as:

For G1:

p1,t + sr1,t ≤ 220

0 ≤ sr1,t, ≤ u1,t(10*2)

or1,t = sr1,t + (1 – u1,t)15

For G2:

p2,t + sr2,t ≤ 100

0 ≤ sr2,t, ≤ u2,t(10*1.5)

or2,t = sr2,t + (1 – u2,t)10

For G3:

p3,t + sr3,t ≤ 20

0 ≤ sr3,t, ≤ u3,t(10*0.5)

or3,t = sr3,t + (1 – u3,t)10

Example for G1 for Hours 1 through 3

constraints

 u1,1 p1,1 sr1,1 or1,1 u1,2 p1,2 sr1,2 or1,2 u1,3 p1,3 sr1,3 or1,3

= 15 15 0 -1 1 0 0 0 0 0 0 0 0

E 220 0 1 1 0 0 0 0 0 0 0 0 0

E 0 -10*2 0 1 0 0 0 0 0 0 0 0 0

E 0 0 0 -1 0 0 0 0 0 0 0 0 0

= 15 0 0 0 0 15 0 -1 1 0 0 0 0

E 220 0 0 0 0 0 1 1 0 0 0 0 0

E 0 0 0 0 0 -

10*2

0 1 0 0 0 0 0

E 0 0 0 0 0 0 0 -1 0 0 0 0 0

= 15 0 0 0 0 0 0 0 0 15 0 -1 1

E 220 0 0 0 0 0 0 0 0 0 1 1 0

 23

E 0 0 0 0 0 0 0 0 0 -

10*2

0 1 0

E 0 0 0 0 0 0 0 0 0 0 0 -1 0

Ramping Constraints

For the test case

G1 at any hour

p1,t – p1,t-1 ≤ y1,t100 + (1-y1,t)40

p1,t-1 – p1,t ≤ z1,t100 + (1-z1,t)50

G2 at any hour

p2,t – p2,t-1 ≤ y2,t10 + (1-y2,t)30

p2,t-1 – p2,t ≤ z2,t10 + (1-z2,t)25

G3 at any hour

p3,t – p3,t-1 ≤ y3,t10 + (1-y3,t)20

p3,t-1 – p3,t ≤ z3,t10 + (1-z3,t)20

Example for G1 for Hours 1 through 4

constraints

 p1,1 y1,1 z1,1 p1,2 y1,2 z1,2 p1,3 y1,3 z1,3

E 40 1 -(100-40) 0 0 0 0 0 0 0

E 50 -1 0 -(100-50) 0 0 0 0 0 0

E 40 -1 0 0 1 -(100-40) 0 0 0 0

 u1,1 p1,1 px1,1,1 px1,1,2 px1,1,3 px1,1,4 δ1,1 δ1,1,1 δ1,1,2 δ1,1,3 δ1,1,4 y1,1 z1,1 sr1,1 or1,1

0 0 -220 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 100 -1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 24

E 50 1 0 0 -1 0 -(100-50) 0 0 0

E 40 0 0 0 -1 0 0 1 -(100-40) 0

E 50 0 0 0 1 0 0 -1 0 -(100-50)

E 40 0 0 0 0 0 0 -1 0 0

E 50 0 0 0 0 0 0 1 0 0

Minimum Up/Down Time

Minimum Up Time

 Minimum Down Time

 25

System Load Balance and Reserve Requirements

Example for G1 and G2 for Hours 1 through 2

objective function

constraints

 p1,1 sr1,1 or1,1 p1,2 sr1,2 or1,2 p2,1 sr2,1 or,21 p2,2 sr2,2 or2,2

= -D1 1 0 0 0 0 0 1 0 0 0 0 0

= -D2 0 0 0 1 0 0 0 0 0 1 0 0

E -SR1 0 -1 0 0 0 0 0 -1 0 0 0 0

E -SR2 0 0 0 0 -1 0 0 0 0 0 -1 0

E -OR1 0 0 -1 0 0 0 0 0 -1 0 0 0

E -OR2 0 0 0 0 0 -1 0 0 0 0 0 -1

 26

Algorithms

Determine Function Type

Start matrix, generate other hours

Many of the subcomponents of the unit commitment program had a common

algorithm. First there was the constraint matrix for the first hour. Subsequent matrices

were dependent upon the values from hour 1. Also, these other matrices were formed

using dynamic references. For example, if the matrix from hour 4 was formed, it was

based off the matrix from hour 3. The matrix from hour 2 was formed off the basis from

hour 1. Thus only the first hour need be programmed well and the following hours have

values that stem from the previous hour but are shifted either vertically or horizontally,

but most of the time vertically in the matrix. The amount of shift is static and determined

by looking at patterns for the test case matrices shown in the formulation section of the

report. Once a common shift pattern is know, it is programmed and then tested.

For 1:length(price)

 Is value(price) < previous value

 Yes  non-convex function

 No  convex function

Is this matrix coordinate within the first hour?

Yes

 Is this cell coordinate (x,y) == K ?

 Yes

 Set Value

 No

 Is this cell coordinate (k,l) == M ?

 Yes

 Set Value

 No

 ……………………………………

No

 Set value of (x,y) to value of (x - shift,y - shift)

 27

III. Security-Constraints

Formulation

 28

Procedures

In lieu of not completing the program for the security portion of the programming

project, process flows will illustrate a technique for completion.

Import Line Impedances

Create B, Admittance Matrix

Form the Pg-Pd + y/x matrix = P

Solve for the angles, theta.

 P = b*theta

Eliminate the reference bus values to help solve the theta values

Form Line Flows, PL(1-2) = (theta1 – theta2 – y12)/x12

 For 1-N lines

Determine shift factors, add to the PTDF

Enter the equations into the constraint matrix

Enter line flow limits into the constraint matrix

Enter the phase shifter limits into the constraint matrix

Create bounds, xint

Add the A,Ae,b,be,lb,ub,xint to the unit commitment A,Ae,b,be,lb,ub,xint matrices.

Run the MIP

 29

IV. Commentary

Conclusions

The SCUC programming project was a challenge that was not completed due to

the author’s time constraints (see project planning). The unit commitment portion had

each subcomponent minus the minimum uptime/downtime completed and only for non-

convex generator price functions. At the end of the project deadline, the program

encounter bugs for the convex price functions that were not fixed due to the deadline. The

MATLAB code in the appendix will demonstrate the unit commitment functionality for a

non-convex function, generator one in the test case example.

Project Planning

I would like to add some personal commentary to the project. Firstly I spent lots

of hours (> 20) on the final project only to have to abruptly end . I started the final project

about 2 weeks from the deadline because of having to work on coursework and

homework for two classes. I had a few wrong starts in the program design. I came to a

few road blocks in generating some code to loop the subcomponents. In the few days

before the deadline only did I become proficient in the process of developing

subcomponents for the SCUC and fully understanding the security portion with the help

of the last assignment due. Other personal blocks constrained my time available for the

project: working full-time, taking another course, having to move entirely to a different

apartment, being sick,etc. If I could redo the project, I would have started a month before

 30

the deadline, on the unit commitment portion, even though security-based assignments

was not addressed until the past few weeks. One month development time seems more

feasible than two weeks project planning. But I must add, that pursing the programming

project offered more of an enjoyable challenge that writing a paper. I’m still glad that I

chose the programming project even though was not completed!

 31

V. Appendix

MATLAB Code – Main Program to formulate unit commitment

for a non-convex function

% Generator # 1 Information
noload = [200];

startupcost=[100];

shutdowncost=[50];
price = [20 25 24 23];

quantity = [40 60 80 40];

NT = [24];

PMIN= [100];

PMAX= [220];

QSC = [15];
MSR = [2];

RU = [40];

RD = [50];
D = [175.19 165.15 158.67 154.73 155.06 160.48 173.39 177.6 186.81 206.96 228.61 236.1 242.18 243.6 248.86 255.79 256 246.74

245.97 237.35 237.31 232.67 195.93 195.6];

SR = [2.63 2.48 2.38 2.32 2.33 2.4 2.6 2.85 3.09 3.26 3.43 3.54 3.63 3.66 3.73 3.84 3.84 3.7 3.69 3.56 3.56
 3.41 3.02 2.95];

OR = [12.26 11.56 11.1 10.83 10.85 11.23 12.14 13.33 14.39 15.2 16 16.52 16.95 17.05 17.42 17.91 17.92 17.27 17.22

16.62 16.62 15.9 14.07 13.78];

% Create objective function, constraints, bounds, based on generator values

% listed above

[f,Aeq,beq,Aeinq,beinq,lb,ub,x]=generator(noload,startupcost,shutdowncost,price,quantity,NT,PMIN,PMAX,QSC,MSR,RU,RD,D,S

R,OR);

A = Aeinq;

b = beinq;
xint = x;

clear Aeinq, clear beinq, clear x;

% Call MIP solver

[x,fval,exitflag,output,lambda]=mipprog(f,A,b,Aeq,beq,lb,ub,xint);

% output results

x

% objective function value

fval

 32

MATLAB Code – Generator function

%generator Makes generator objective function and constraints

%

% SYNOPSIS: [f,Aeq,beq,Aeinq,beinq,lb,ub,x]=generator(noload,startupcost,shutdowncost,price,quantity, NT)
%

% Determines type of price function (non-convex or convex)

% Depending on type, makes objective function, equality constraints,
% inequality constraints, lower bounds, upper bounds, and x

% (integer/continous) array for 1 generator given a 1XN array for the

% price, a 1XN array for the quantity, and a 1X1 array with the noload
% cost, startup cost, and shut down cost. Everything else is dynamically created.

% NT is the number of hours under study, other variables are defined.

function

[f,Aeq,beq,Aeinq,beinq,lb,ub,x]=generator(noload,startupcost,shutdowncost,price,quantity,NT,PMIN,PMAX,QSC,MSR,RU,RD,D,S

R,OR)

%
% Determine Function Type

%

% Dummy Variables

temp = price(1);
flag1 = 0;

for i=2:length(price)
if price(i) < temp

 flag1 = 1;

else
 temp = price(i);

end;

end;

%

% If flag1 = 1, this is a non-convex function (the price decreases)
% If flag1 = 2, this is a convex function, the price is non-decreasing

%

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Non-Convex Function
%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if flag1 == 1
 % Form non-convex functions

 c = zeros(1,length(price));

 for i=1:length(c)
 c(i) = price(i);

 end;

 % generate p variables

 p = zeros(1,length(price));

 p(1) = 1;
 for i=1:length(p)

 p(i) = 1;

 end;

 % generate delta variables

 d = zeros(1,length(price));
 d(1) = 1;

 for i=1:length(d)

 d(i) = 1;
 end;

 u = zeros(1,1+length(d));
 f = zeros(1,length(u));

 33

 %%

 % Objective function

 f1 = [noload 0 c f startupcost shutdowncost 0 0];
 %%

 f = [];

 for i=1:NT
 f = [f f1];

 end;

 %%%

 % Equality constraints

 %%%
 e = zeros(1,length(d));

 e = [0 -1 p 0 e 0 0 0 0];

 Aeq = [];
 for i=1:NT

 Aeq = [Aeq e];

 end;

 beq = [0];

 %%

 % Inequality contraints

 %%%

 % this generates the constraint array
 %make temp array

 temp = zeros(1,length(price));

 t = [-1;1];
 s = [0;0];

 temp2 = [];

 for i=1:length(price)
 for j=1:length(price)

 if i == 1

 if j ==1
 temp2 = [t];

 else

 temp2 = [temp2 s];
 end;

 else

 if j == i

 temp2 = [temp2 t];

 else
 temp2 = [temp2 s];

 end;

 end;
 end;

 end;

temp2;
j=1;

k = length(price);

temp3 = [];
for i=1:length(price)

 temp3 = [temp3; temp2(1:2,j:k)];

 j = j + length(price);
 k = k + length(price);

end;

temp3;

mastermatrix = temp3;

deltamatrix = mastermatrix;

pcolumn = [zeros(1,length(mastermatrix))]';

scolumn = [zeros(1,length(mastermatrix))]';
ocolumn = [zeros(1,length(mastermatrix))]';

ycolumn = [zeros(1,length(mastermatrix))]';

zcolumn = [zeros(1,length(mastermatrix))]';
dcolumn = [zeros(1,length(mastermatrix))]';

 34

ccolumn = [zeros(1,length(mastermatrix))]';

ucolumn = [0 -quantity(1) zeros(1,length(mastermatrix)-2)]';

% temp2(1:2,i:j)
% temp2(1:2,1:3) i j = length(p)

% temp2(1:2,4:6) i = i + length(p) j = j + length(p)

% temp2(1:2,7:9) i = i + length(p) j = j + length(p)

% add the zero column

mastermatrix = [ucolumn pcolumn mastermatrix dcolumn];

% add the delta values

for i=1:length(deltamatrix)

 for j =1:length(deltamatrix)/2
 deltamatrix(i,j) = 0;

 end;

end;

% add delta values

for i=1:length(deltamatrix)

 for j =1:length(deltamatrix)/2
 if i == 1 && j == 1

 deltamatrix(i,j) = quantity(1);
 else

 if i == length(deltamatrix) && j == length(deltamatrix)/2

 deltamatrix(i,j) = -quantity(length(quantity));
 else

 if (j > 1 && j < length(deltamatrix)/2) && (i > 2 && i < length(deltamatrix)-1)

 if (j*2 == i) || (j*2-1 == i)

 if j*2 == i

 deltamatrix(i,j) = -quantity (j);
 else

 deltamatrix(i,j) = quantity(j);

 end;
 else

 deltamatrix(i,j) = 0;

 end;

 else

 deltamatrix(i,j) = 0;

 end;

 end;

 end;

 end;

end;

mastermatrix = [mastermatrix deltamatrix ycolumn zcolumn scolumn ocolumn];

Aeinq = [];

for i=1:NT
 Aeinq = [Aeinq mastermatrix];

end;

beinq = zeros(1,2*length(quantity))';

 35

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Start-up and Shut-down Indicators

%%
%%%%%%%%%%%%%%%%%%%%%%%%%%

n = 6*length(price);

m = length(Aeinq);

%Initialize first array to zero

Aeq2 = zeros(n,m);

for j=1:m

 for i=1:n
 if i == 1 && j == 1

 Aeq2(i,j) = -1;

 Aeq2(i+1,j) = 1;
 else

 if ((j == 2*length(price) +4) && i == 1)

 Aeq2(i,j) = 1;

 Aeq2(i,j+1) = -1;

 else

 if (i >1 && (j > 2*length(price)+7))
 Aeq2(i,j) = Aeq2(i-1,j-(2*length(price)+7));

 else

 end;
 end;

 end;

 end;

end;

beq2 = zeros(1,6*length(price))';

% Add to master equality arrays
Aeq = [Aeq; Aeq2];

beq = [beq; beq2];

% Make Inequality arrays

n = 6*length(price);
m = length(Aeinq);

%Initialize first array to zero
Aeinq2 = zeros(n,m);

for j=1:m
 for i=1:n

 if ((j == 2*length(price)+4) && i == 1)

 Aeinq2(i,j) = 1;
 Aeinq2(i,j+1) = 1;

 else

 if (i >1 && j > (2*length(price)+7))
 Aeinq2(i,j) = Aeinq2(i-1,j-(2*length(price)+7));

 else

 end;
 end;

 end;

end;

beinq2 = ones(1,6*length(price))';

% Add to master equality arrays

Aeinq = [Aeinq; Aeinq2];
beinq = [beinq; beinq2];

 36

%%%

% Capacity constraints

%%%

n = 2*NT;

m = length(Aeq);

%Initialize first array to zero

Aeq2 = zeros(n,m);

for j=1:m

 for i=1:n

 if i == 1 && j == 2
 Aeq2(i,j) = PMIN;

 Aeq2(i+1,j) = -PMAX;

 Aeq2(i,j+1) = 1;
 Aeq2(i+1,j+1) = -1;

 else

 if (i >2 && j > (2*length(price)+7))

 Aeq2(i,j) = Aeq2(i-2,j-(2*length(price)+7));

 else

 end;

 end;

 end;
end;

beq2 = zeros(1,2*NT)';

% Add to master equality arrays

Aeq = [Aeq; Aeq2];
beq = [beq; beq2];

%%%
% Reserves

%%%

n = NT;

m = length(Aeq);

%Initialize first array to zero

Aeq2 = zeros(n,m);

for j=1:m

 for i=1:n

 if i == 1 && j == 1
 Aeq2(i,j) = QSC;

 Aeq2(i,j+2*length(price)+5) = -1;

 Aeq2(i,j+2*length(price)+6) = 1;
 else

 if (i >1 && j > (2*length(price)+7))

 Aeq2(i,j) = Aeq2(i-1,j-(2*length(price)+7));
 else

 end;

 end;

 end;

end;

beq2 = 15*ones(1,NT)';

% Add to master equality arrays
Aeq = [Aeq; Aeq2];

beq = [beq; beq2];

 37

n = 3*NT;

m = length(Aeinq);

%Initialize first array to zero
Aeinq2 = zeros(n,m);

for j=1:m
 for i=1:n

 if i == 2 && j == 1

 Aeinq2(i,j) = -10*MSR;
 Aeinq2(i-1,j+1) = 1;

 Aeinq2(i-1,j+2*length(price)+5) = 1;

 Aeinq2(i,j+2*length(price)+5) = 1;
 Aeinq2(i+1,j+2*length(price)+5) = -1;

 else

 if (i >3 && j > (2*length(price)+7))
 Aeinq2(i,j) = Aeinq2(i-3,j-(2*length(price)+7));

 else

 end;

 end;

 end;

end;
beinq3 = [PMAX 0 0];

beinq2 = [];
for i=1:NT

 beinq2 = [beinq2 beinq3];

end;
beinq2 = beinq2';

% Add to master equality arrays
Aeinq = [Aeinq; Aeinq2];

beinq = [beinq; beinq2];

%%

% Ramping constraints

%%

n = 2*NT;

m = length(Aeq);

%Initialize first array to zero

Aeq2 = zeros(n,m);

for j=1:m

 for i=1:n
 if i == 1 && j == 2

 Aeq2(i,j) = 1;

 Aeq2(i+1,j) = -1;
 Aeq2(i+2,j) = -1;

 Aeq2(i+3,j) = 1;

 Aeq2(i,j+2*length(price) + 2) = -(PMIN-RU);
 Aeq2(i+1,j+2*length(price) + 3) = -(PMIN-RD);

 else
 if (i >2 && j > (2*length(price)+7))

 Aeq2(i,j) = Aeq2(i-2,j-(2*length(price)+7));

 else
 end;

 end;

 end;
end;

beq3 = [RU RD];
beq2 = [];

 38

for i=1:NT

 beq2 = [beq2 beq3];

end;

beq2 = beq2';

% Add to master equality arrays

Aeq = [Aeq; Aeq2];
beq = [beq; beq2];

%%
%%%%%%%%%%%%%%%%%%%%%%%%%%

% System Load Balance and Reserve Requirements

%%
%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%

% Load Balance

%%%%%%%%%%%%%%%%%%%%%%%

n = NT;

m = length(Aeq);

%Initialize first array to zero
Aeq2 = zeros(n,m);

for j=1:m
 for i=1:n

 if i == 1 && j == 2

 Aeq2(i,j) = 1;
 else

 if (i >1 && j > (2*length(price)+7))

 Aeq2(i,j) = Aeq2(i-1,j-(2*length(price)+7));
 else

 end;

 end;

 end;

end;

beq2 = -[D]';

% Add to master equality arrays
Aeq = [Aeq; Aeq2];

beq = [beq; beq2];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Spinning Reserve Balance

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

n = NT;

m = length(Aeinq);

%Initialize first array to zero

Aeinq2 = zeros(n,m);

for j=1:m

 for i=1:n
 if i == 1 && j == 14

 Aeinq2(i,j) = -1;

 else
 if (i >1 && j > (2*length(price)+7))

 Aeinq2(i,j) = Aeinq2(i-1,j-(2*length(price)+7));

 else
 end;

 39

 end;

 end;

end;

beinq2 = -[SR]';

% Add to master equality arrays
Aeinq = [Aeinq; Aeinq2];

beinq = [beinq; beinq2];

%%

% Operating Reserve Balance

%%%

n = NT;

m = length(Aeinq);

%Initialize first array to zero
Aeinq2 = zeros(n,m);

for j=1:m
 for i=1:n

 if i == 1 && j == 15
 Aeinq2(i,j) = -1;

 else

 if (i >1 && j > (2*length(price)+7))
 Aeinq2(i,j) = Aeinq2(i-1,j-(2*length(price)+7));

 else

 end;

 end;

 end;

end;

beinq2 = -[OR]';

% Add to master equality arrays

Aeinq = [Aeinq; Aeinq2];

beinq = [beinq; beinq2];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Upper Bounds
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

ub = [];
for i=1:length(price)

 ub = [ub inf];

end;

ub1 = [inf ub];

ub2 = ones(1,length(price));

ub2 = [1 ub2];

ub1 = [1 ub1 ub2 1 1 1 1];

ub = [];

for i=1:NT
 ub = [ub ub1];

end;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Lower bounds

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 40

lb = zeros(1,length(Aeinq));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% xint array
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

x = [];
for i=1:length(price)

 x(i) = 1;

end;

x2 = [];

for i = 1:length(price)
 x2(i) = 0;

end;

x1 = [1 0 x2 1 x 1 1 1 1];

x = [];

for i=1:NT

 x = [x x1];

end;

%%

%%
% Convex Function

%%
%%

%

else

 % Form convex function

 c = zeros(1,length(price));
 c(1) = 0;

 for i=1:length(c)

 c(i) = price(i);
 end;

 % generate p variables
 p = zeros(1,length(price));

 p(1) = 1;

 for i=1:length(p)
 p(i) = 1;

 end;

 % generate delta variables

 % none needed in convex, but used for consistentcy

 d = zeros(1,length(price));

 u = zeros(1,1+length(d));
 f = zeros(1,length(u));

 %objective function

 f1 = [noload 0 c f startupcost shutdowncost 0 0];
 f = [];

 for i=1:NT

 f = [f f1];
 end;

 %equality constraints
 e = zeros(1,length(d));

 e = [0 -1 p 0 e 0 0 0 0];

 Aeq = []

 for i=1:NT

 Aeq = [Aeq e];
 end;

 41

 beq = [0];

 %inequality constraints

 %make temp array

 temp = zeros(length(p));

 for i=1:length(p)
 for j=1:length(p)

 if i == j

 temp(i,j) = -1;
 else

 temp(i,j) = 0;

 end;
 end;

 end;

 temp = [temp];

 temp2 = zeros(length(p));

 for i=1:length(p)

 for j=1:length(p)

 if i == j
 temp2(i,j) = 1;

 else

 temp2(i,j) = 0;
 end;

 end;
 end;

 temp2 = [temp2];
 % This is the inequality matrix

 Aeinq = [temp; temp2];

 [m,n] = size(Aeinq);

 mcolumn= zeros(1,m)';

 e = [mcolumn mcolumn Aeinq mcolumn zeros(m,n) mcolumn mcolumn mcolumn mcolumn];
 Aeinq = [];

 for i=1:NT

 Aeinq = [Aeinq e];
 end;

 % make the b equations

 temp = zeros(1,length(quantity));

 beinq = [temp'; quantity'];

% create upper bound

ub = [];

for i = 1:length(price)+1

 ub(i) = inf;
end;

ub = [inf 1 ub];

% create lower bound

lb = zeros(1,length(Aeinq));

 42

% create x array

x = [];

for i=1:length(price)+1
 x(i) = 0;

end;

x = [0 1 x];

end;

output=[];

